人工电子材料与技术团队目前现有教授2人(均为陕西省高层次人才、betway必威西汉姆联官网翱翔海外学者),副教授2人,博士后1人,科研助理1人,在读研究生2人。主要针对非自然存在的自旋电子材料,通过特殊结构设计,从中获取可控的奇异特性,为智能电子系统提供小尺寸、低功耗、快速处理和非易失性等优点集于一身的载体。详情请访问研究组主页:http://lab-artist.com/about_team.html。具体成员及研究方向如下:
课题组成员
章文教授
Email: zhang.wen@nwpu.edu.cn
Webpage: https://teacher.nwpu.edu.cn/zhangwen
黄炳钧教授
Email: pingkwanj.wong@nwpu.edu.cn
Webpage: https://teacher.nwpu.edu.cn/pkjwong
蒋盛副教授
Email: jiangsheng@nwpu.edu.cn[
谢谢]
Webpage: https://teacher.nwpu.edu.cn/jiangsheng
Iltaf Muhammad 博士后
Email: iltaf.muhammad@nwpu.edu.cn
Webpage: https://teacher.nwpu.edu.cn/m/2020054004
研究生:
蒿玉心(2020级),韩亚卓(2020级)
科研助理:
李润杰
1. 人工磁体及自旋电子结构
二维层状晶体——由于其具有大部分三维材料所不具备的新颖的光、电、磁特性——而受到青睐。随着2010年诺贝尔物理学奖授予二维层状材料领域的Andre Geim教授和Konstantin Novoselov教授,探寻石墨烯以外的新型二维晶体一直是研究领域的前沿课题。尤其是二维层状材料的铁磁性行为,引起了自旋电子学领域专家和科研人员的极大的研究兴趣。本研究团队目前致力于(1)通过超高真空分子束外延系统制备生长高质量的二维磁性单晶薄膜;(2)探索二维人工磁体的磁学、调控以及相关异质结的特性和功能;以及(3)这些磁体在低功耗、小尺寸和非易失性自旋电子器件中的应用。目前在Advanced Materials,Progress in Materials Science,ACS Nano,Nano Letters,Advanced Functional Materials等杂志上发表论文约20篇。
图1 人工磁体及自旋电子结构[1-6]
代表性成果:
[1] Lei Zhang#, Tong Yang#, Xiaoyue He, Wen Zhang, Giovanni Vinai, Chi Sin Tang, Xinmao Yin, Piero Torelli, Yuan Ping Feng, Ping Kwan Johnny Wong*, and Andrew T. S. Wee*, Molecular Beam Epitaxy of Two-Dimensional Vanadium-Molybdenum Diselenide Alloys, ACS Nano 14, 11140 (2020)
[2] Rui Zhu#, Wen Zhang#*, Wei Shen, Ping Kwan Johnny Wong, Qixing Wang, Qijie Liang, Zhen Tian, Ya Zhai, Cheng-wei Qiu, and Andrew T. S. Wee*, Exchange Bias in van der Waals CrCl3/Fe3GeTe2 Heterostructures, Nano Letters 20, 5030 (2020).
[3] Wen Zhang*, Lei Zhang, Ping Kwan Johnny Wong*, Jiaren Yuan, Giovanni Vinai, Piero Torelli, Gerrit van der Laan, Yuan Ping Feng, and Andrew T. S. Wee*, Magnetic Transition in Monolayer VSe2 via Interface Hybridization, ACS Nano 13, 8897 (2019).
[4] Ping Kwan Johnny Wong#*, Wen Zhang#, Jun Zhou, Fabio Bussolotti, Xinmao Yin, Lei Zhang, Alpha T. NDiaye, Simon A. Morton, Wei Chen, Johnson Goh*, Michel P. de Jong, Yuan Ping Feng, and Andrew T. S. Wee*, Metallic 1T Phase, 3d1 Electronic Configuration and Charge Density Wave Order in Molecular Beam Epitaxy Grown Monolayer Vanadium Ditelluride , ACS Nano 13, 12894 (2019).
[5] Wen Zhang#*, Ping Kwan Johnny Wong#, Xiaochao Zhu, Ashutosh Rath, Zhaocong Huang, Hongyu Wang, Simon A. Morton, Jiaren Yuan, Lei Zhang, Rebekah Chua, Shengwei Zeng, Er Liu, Feng Xu, Ariando, Daniel H. C. Chua, Yuan Ping Feng, Gerrit van der Laan, Stephan J. Pennycook, Ya Zhai, and Andrew T. S. Wee*, Ferromagnet/Two-Dimensional Semiconducting Transition-Metal Dichalcogenide Interface with Perpendicular Magnetic Anisotropy, ACS nano 13, 2253 (2019).
[6] Ping Kwan Johnny Wong#, Wen Zhang#, Fabio Bussolotti, Xinmao Yin, Tun Seng Herng, Lei Zhang, Yu Li Huang, Giovanni Vinai, Sridevi Krishnamurthi, Danil W. Bukhvalov, Yu Jie Zheng, Rebekah Chua, Alpha T. N’Diaye, Simon A. Morton, Chao-Yao Yang, Kui-Hon Ou Yang, Piero Torelli, Wei Chen, Kuan Eng Johnson Goh, Jun Ding, Minn-Tsong Lin, Geert Brocks, Michel P. de Jong*, Antonio H. Castro Neto*, and Andrew Thye Shen Wee*, Evidence of Spin Frustration in a Vanadium Diselenide Monolayer Magnet, Advanced Materials, 31, 1901185 (2019)
2. 智能自旋电子器件及其应用研究
2007年,诺贝尔物理学奖授予Albert Fert教授和Peter Grünberg教授,以表彰其在巨磁电阻效应以及自旋电子学领域的巨大贡献。自此,自旋电子学得到了长足的发展,在产业上的应用也越来越广泛,包括大幅提高硬盘读写速度与可靠性的巨磁电阻读出头、以及近年来人们专注研发的磁性随机存储器。2020年,IBM推出了14 nm的自旋转移矩磁随机存储芯片(STT-MRAM)。最近,研究人员人们同时开始关注另一种新型的自旋电子学器件—自旋矩纳米振荡器。它可以用于微波信号源,磁场传感器,人工智能中的神经网络计算等。本课题组致力于:(1)纳米级微波振荡器的生长制备加工工艺和微波特性研究;(2)自旋电子学相关器件的存算一体研究;(3)人工智能硬件的设计与应用研究。目前在Physical Review Letters,ACS Applied Materials & Interfaces,Nanoscale,Physical Review Applied,Applied Physics Letters等高水平期刊发表论文20余篇。
图2 智能自旋电子器件及其应用研究[7-10]
代表性成果:
[7] Wen Zhang*, Dong Zhang, Ping Kwan Johnny Wong, Honglei Yuan, Sheng Jiang, Gerrit van der Laan, Ya Zhai*, and Zuhong Lu , Selective Tuning of Gilbert Damping in Spin-Valve Trilayer by Insertion of Rare-Earth Nanolayers , ACS Applied Materials & Interfaces 7, 17070 (2015).
[8] Sheng Jiang, Sunjae Chung*; Quang Tuan Le; Hamid Mazraati; Afshin Houshang; JohanÅkerman*, Using MagneticDroplet Nucleation to Determine the Spin Torque Efficiency and Asymmetry in Cox(Ni,Fe)1−x Thin Films, Physical Review Applied 10, 054014 (2018).
[9] Sheng Jiang; Roman Khymyn; Sunjae Chung; Tuan Quang Le; Liza Herrera Diez; AfshinHoushang; Mohammad Zahedinejad; Dafiné Ravelosona; Johan Åkerman*; Reduced Spin torque Nano-Oscillator Linewidth Using He+ Irradiation, Applied Physics Letters 116, 72403 (2020).
[10] Gaolong Cao#, Sheng Jiang#, Johan Åkerman*, and Jonas Weissenrieder*, Femtosecond Laser Driven Precessing Magnetic Gratings, Nanoscale 13, 3746 (2021).
3. X射线探究纳米磁性与磁畴
利用同步辐射装置产生的X射线具有强度高、准直性及稳定性好、发散度小等优点,而且具有元素分辨力。利用X射线和物质的相互作用原理可以灵敏的探测材料的结构和物理性质,在材料领域有着广泛的应用。当今,利用X射线磁性圆二色、及其在X射线光发射电子显微镜中的应用探测纳米磁性是目前最先进、最灵敏的探测手段之一。本研究组致力于通过此先进技术探测原子层厚度的磁性薄膜、纳米器件、以及有机分子材料的磁性、自旋取向、磁畴分布等。目前在Advanced Functional Materials,Journal of Materials Chemistry C,Applied Physics Letters,Organic Electronics等国际优秀期刊发表相关文章30余篇。
图3 X射线探究纳米磁性与磁畴[11-14]
代表性成果:
[11] Wen Zhang*, Ping Kwan Johnny Wong, Dong Zhang, Jinjin Yue, Zhaoxia Kou, Gerrit van der Laan, Andreas Scholl, Jian-Guo Zheng, Zuhong Lu, and Ya Zhai*, XMCD and XMCD-PEEM Studies on Magnetic-Field-Assisted Self-Assembled 1D Nanochains of Spherical Ferrite Particles , Advanced Functional Materials 27, 1701265 (2017).
[12] Ping Kwan Johnny Wong*, Wen Zhang, Gerrit van der Laan, Michel P. de Jong *, Hybridization-Induced Charge Rebalancing at the Weakly Interactive C60/Fe3O4(001) Spinterface , Organic Electronics 29, 39 (2016).
[13] Ping Kwan Johnny Wong*, Wen Zhang, Kai Wang, Gerrit van der Laan, Yongbing Xu, Wilfred van der Wiel, and Michel P. de Jong*, Electronic and Magnetic Structure of C60/Fe3O4(001): A Hybrid Interface for Organic Spintronics, Journal of Materials Chemistry C 1, 1197 (2013).
[14] Wen Zhang, Ping Kwan Johnny Wong, Peng Yan, Jing Wu, Simon A. Morton, Xiangrong Wang, Xuefeng Hu, Yongbing Xu*, Andreas Scholl, Antony Young, Igor Barsukov, Michael Farle, and Gerrit van der Laan, Observation of Current-Driven Oscillatory Domain Wall Motion in Ni80Fe20/Co Bilayer Nanowire, Applied Physics Letters 103, 042403 (2013).